Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 31(11): 104, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33140130

RESUMO

Endodontic rotary files are cutting instruments used to perform root canal procedures within a tooth interior. Focusing on quantitative fractographic analysis increases necessary, clinical performance understanding of file separation failure. This research employed controlled, dynamic testing to failure of commercial rotary files, analyzing the fractographic, forensic characteristics in relation to Weibull reliability determination, considering: (1) design analysis; (2) stress concentrations; (3) times to failure; (4) number of cycles to failure (NCF). Ex vivo testing included three file designs, each having constant tip size (0.035 mm), taper (0.06 mm/mm), and length (25 mm). Files were individually tested using an electric, torque-controlled handpiece, rotating within a standardized, simulated canal until fracture separation occurred. Fractographic analysis, including critical measurements, was conducted using the scanning electron microscope (SEM) (PhenomProX, PhenomWorld, NL). Weibull statistical analysis established reliability factors per design group. Fractographic analysis identified separation fractures, processing inclusions, flexural-fatigue striations, and stress concentrations at flute pitches. Calculated NCF median values (1277-EE; 899-VB; 713-PI) demonstrated significant statistical differences among groups (p < 0.001). Separated apical fragments yielded statistically significant differences (p ≤ 0.05) for varying file design groups. Weibull moduli among groups were statistically equivalent. Fractographic analysis exposed a presence of multiple failure factors in addition to defect distribution, governing cyclic fatigue failure originating at stress concentration points irrespective of file design. Fractographic analysis indicated that a change in file design, specifically at the working edges, in addition to improved surface finish, has the potential of reducing failures by lowering points of stress concentration and reducing fracture initiating surface cracks.


Assuntos
Endodontia/instrumentação , Teste de Materiais , Titânio/química , Ligas Dentárias , Desenho de Equipamento , Humanos , Microscopia Eletrônica de Varredura , Níquel , Reprodutibilidade dos Testes , Rotação , Estresse Mecânico , Propriedades de Superfície , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...